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This article presents a simple and yet very novel approach to developing difference schemes 
for wave equations. The schemes that are developed are explicit in nature. The schemes are of 
such generality that one can transform from one difference scheme to another with only the 
slightest of computational effort. The schemes exhibit dispersive errors. The errors can be 
minimized, however, by increasing the order of truncation error. Numerical results are 
presented for two linear model equations with truncation error ranging up to 0(/r’). Numerical 
results are also presented for a system of shallow water equations. By choosing the 
appropriate (r for a first order linear equation (a defines the geometry of an element) we may 
generate stable schemes for an arbitrary Courant number. 

1. INTRODUCTION 

Generally, the solution to a wave equation at a point in time-space is only a 
function of a limited amount of data. Consider the following two canonical examples: 

(9 24, + cu, = 0, u(x, 0) = f(x) (l-1) 

and 

(ii) Utt - c 
2 

uxx = 0, 4% 0) = f(x), Q-G 0) = g(x). 

The solutions to (1.1) and (1.2) are, respectively, 

u(x, t) = j-(x - ct) 

and 

(l-2) 

(1.3) 

u(x, t) = $[f(x - ct) +f(x + ct)] + $/;I;ff g(z) dz (1.4) 

(see, e.g., Weinberger [lo]). Clearly the solution of (1.1) is propagated along the 
characteristic curve x = x - ct. Similarly the solution of (1.2) at a point (x, t) is only 
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ACCURATEWAVEEQUATION SOLVERS 377 

a function of the triangular data set lying between the characteristics x = x - ct and 
ff = x + ct. 

It is the limited data sets associated with wave equations that lead to our e~~~e~t 
and accurate schemes. A good numerical scheme should take full advantage of a 
wave equation’s limited data set, e.g., Stroud [S]. 

Many finite difference equations are available for solving the various wave 
equations (see, e.g., Roache [6]). Generally, higher order accurate wave equation 
solvers are multi-step schemes (see, e.g., the third order accurate schemes of 

ov [7], and Warming et al. [9]). A well-known single-step, explicit, seeon 
accurate scheme is the Lax-Wendroff method (see, e.g., Roache [6, p 3571 

All the schemes that we will construct will be single-step explicit, however, t 
of accuracy will be variable. 

In this article we will use a modified space-time finite element technique for 
deriving difference equations. Several preliminary results using the method were 
presented in Cushman [l, 21. 

2. NUMERICAL TECHNIQUE 

As partially outlined in Cushman [ 11, we will employ a motived Galerkin 
technique in space-time. Figure 2.1 illustrates the region over which we w-ill apply 
Galerkin’s method. The novelty here is that rather than use all of space-time or even 
a rectangular strip of space-4im.e (Fig. 2.2), we are using only a very small subset of 
a single space-time strip i.n our analysis. This of course (as outlined in the 
introduction) is perfectly justifiable for the wave equations under consideration. 

0. 

c( 

t=nAl 

b. 6. d. 

FIG. 2.1. Triangular elements-the shape is governed by the parameter a. k is the order of 
polynomial interpolation. (a) arbitrary a, (b) a = 0, (c) a = 0.5, (d) = 1.0. 
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FIG. 2.2. Standard discretization of a portion of space-time not used in this article. 

By merely varying the order of the polynomial interpolation and the shape of the 
element we may create numerous difference schemes of arbitrary high order accuracy. 

The Galerkin equation for (1.1) is given by 

a~j aQj 

F+C~ df2Uj: 1 P-1) 

where Gi represents a global (local) interpolating polynomial and test function; uj is 
the known (unknown) value of u at node j; Q, is the area of the space-time triangular 
element; the indices i and j run from one to the number of nodes in the element 
(throughout this article barycentric coordinates will be used); and repeated indices 
imply summation. 

Consider for example linear Lagrange interpolating polynomials coupled with 
Galerkin’s minimization method applied to (1.1). It was shown in Cushman [2] for 
M: = 0.0, 0.5, and 1.0, respectively (see Fig. 2.1), that the resulting difference schemes 
are: (i) unstable Euler, (ii) first order accurate Lax method which is stable for P < 1, 
and (iii) a first order accurate upstream differencing method which also is stable for 
v < 1. The Courant number v is of course c At/Ax. 

If a = 0.5 in Fig. 2.1 and quadratic Lagrange interpolation is used with Galerkin’s 
method applied to (l.l), the resulting difference scheme is (Cushman [2]) the single- 
step, O(d t2, Ax*), Lax-Wendroff method which again is stable for v < 1. For 
clarification, the linear and quadratic equations for arbitrary a are given in the 
Appendix. 

We can apply the method of single space-time elements to (1.2). Instead, however, 
we choose to apply it to an equivalent system. In particular, ~4 and u of the system 

Ut + co, = 0, 4% 0) = f(x), 

u, + cu, = 0, 4% 0) = g(x), 
(2.2a) 

will satisfy the second order equation (1.2). In fact any second order one-dimensional 
equation can be decomposed into a system of first order equations. 

The Galerkin equation for (2.2a) with the notation of (2.1) is given by 
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If 1 is the number of unknown nodal values of u and m is the number of known 
nodal values in the element (Fig. 2.1), the general form of (2. I) in matrix rotating 
can be written as 

= 0, (2.%ia) 

where C has dimension m x (1 + m), B has dimension 1 X m, A has dimension I X 1, y 
is the vector of known nodal values, and E is the vector of unknown nodal values. 

Thus 

c u =o 
( 1 x 

corresponds to the equations for the nodes with known nodal values of u and 

(-Bi A) (;)=o 
I 

j2.33) 

corresponds to the equations for the nodes with unknown nodal values of U. 
Hence, we need only examine the system 

X= A-‘Byl (2.34 

The matrix equation associated with (2.2b) may be developed in the same fashion, 
only in the case of (2.2b) there are two unknowns and hence two equations for each 
node. 

Of course (2.3d) contains much more information than necessary. The entirety of 
information we need is given by the row of A-‘B which corresponds to the location 
in the vector f with the value of u at the (n + l)st time level. For example, if 
quadratic interpolation is used with (2.1) and a = 8.5, the resulting eq~~t~~~ 
corresponding to (2.3) has the form. 

un+ 112 
J+W 

)i 

all al2 al3 g- 1 

nt1 = 
?i azl az2 a23 l4; 

u+1/2 
uj- 1/Z a31 a32 a33 G- 1 

and hence, 

i.e., we need only row two in A-‘B. Here, if the details are worked out (see 
Appendix) we find a21 = (v/2)(1 + v), az2 = 1 - Y*, and az3 = (v/2)(v - I), 

For polynomial interpolation higher than degree three it is impractical to invert A 
analytically. Thus we can not determine a closed form for the c~rrespQ~d~~~ 
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difference scheme for u at the (yt + l)st time level. All difference schemes of order 
greater than three are therefore determined in the machine. 

3. HEURISTIC STABILITY AND TRUNCATION ANALYSIS 

It is well known (cf. Oden and Reddy [5]) that the Euclidian space interpolation 
error for kth degree interpolation polynomials over triangular elements has the form: 

where D”’ is the mth Frechet derivative (cf. Wouk [ 11, p. 267]), h is the max{h,}, 
h, = max,.g,ne (2 - p], d = min,{d,}, de = sup{diameter of all spheres contained in 
a,}, u(Z) is the exact solution, and z?(Z) is the polynomial approximation. 

If we let the elements shrink in a regular fashion, R.H.S. (3.1) takes the form 
ck+l /z~+‘-~. Thus, since we are approximating the first derivative (m = 1) in time 
and space of u for (1.1) we expect the order of accuracy of the corresponding 
difference scheme to be O(hk). And in fact, the analytical schemes for first (k = 1) 
and second (k = 2) order polynomials show this to be the case. Similarly, numerical 
tests show this result holds for higher order polynomials. For (1.2) the schemes are 
O(hk-‘), however, if (1.2) is decomposed into the system of first order equations 
(2.2a) the schemes are O(hk). 

The stability of the difference schemes can also be very easily determined in a 
heuristic fashion. Consider first (1.1). The corresponding characteristic equation is 
dt/dx = l/c and the solution to (1.1) is (1.3). Clearly the solution to (1.1) is 
propagated along the characteristic equation. One is thus led to believe that stable 
schemes will result only when Galerkin’s method is applied over a region containing 
the characteristic data. This in fact turns out to be the case for all orders of 
polynomials we have examined (up to order 5). Thus, for example, with quintic inter- 
polation, if v > 5a or v < 5(a - l), the difference schemes associated with (2.1) are 
unconditionally unstable and if 5(a - 1) < v < 5a, they are conditionally stable, as 
will be illustrated in the numerical results section. We should also point out that for 
the linear and quadratic cases this heuristic stability can be verified analytically (see 
Cushman [2]). 

A similar analysis applies to (1.2); only in this case the region over which 
Galerkin’s method is applied must contain all of the data set illustrated in the 
introduction. 

4. COMPUTATIONAL PROCEDURE AND NUMERICAL RESULTS 
FOR LINEAR EQUATIONS 

The computational procedure is quite simple. The only operation that consumes 
much time is the inversion of the matrix A in (2.3d). For a fixed u, A, however, need 
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TABLE I 

unknowns 
Number of 

knowns 
m 

Note. Dimension A = I X 1. dimension B = 1 X m. 

8C 

7c 

8C 

Max Error 

id3 

5c 

4c 

3c 

2c 

IC 

C 

- =4=0.5 
o--o -= 1.0 
p---Q oi= 0.75 

T=80 units 

Quadratic Polynomial 

1 
‘4 

4 
k--AX--b-AX---l 

FIG. 4.1. Results for (1.1) with sine wave initial data with quadratic interpolation. When a = 0.5 the 
difference scheme is the classical Lax-Wendroff. Note errors are O(h2). 



382 HUANG AND CUSHMAN 

be inverted only once. In the numerical results to be presented A-’ is accurate to 12 
digits. When barycentric coordinates (Lagrange interpolating polynomials) are used, 
all components of A and B can be and were integrated analytically. 

The dimensions of A and B for various order polynomial interpolants with (1.1) 
are in Table I. The dimensions are doubled for (2.2a). As an example consider the 
O(h5) scheme. In this case A is 15 x 15 and needs to be inverted (to 1Zdigit 
accuracy), but only the row of A -’ corresponding to u at the (n + 1)st time level 
need be multiplied by the 15 x 6 matrix B. 

Consider the following example: 

Ut + cu, = 0, 24(x, 0) = sin x, (4.1) 

the solution to which is U(X, t) = sin(x - ct). Figures 4.1 through 4.4 represent the 
error in the numerical results to the problem ranging from second order accurate to 
fifth order accurate. The figures represent plots of the maximum error vs the 

60 

A---P o;=i.oo 
- 4=0.?5 
w---n cli 0.50 

T =  60 units 

i 

I 

FIG. 4.2. Results for (1.1) with sine wave initial data with cubic interpolation. 
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a---e *=0.5 
5-----n a=1.0 
- *=0.75 

T  =80 units 

Quortic Polynomioi 

k-AX-+-AX-+--AX--+-AX-+ 

FIG. 4.3. Results for (1.1) with sine wave initial data with quartic interpolation. O(h4) error. Note 
also that the number of points where the exact solution is obtained has increased over Figs. 4. i and 4.2. 

- a=.O.S 
c-----a oz=io 
A-----+ -= 0.6 
x---a -= 0.8 

T = 80 units 

FIG. 4.4. Results for (1.1) with sine wave initial data with quintic interpolation. Errors are now of 
O(h’) with the exceptions of the regions between the arrows, e.g., # k indicates the region for a = 1.0 
within which the error is O(h3). 



NJ I 20 
NSTEPI a0 
TM I ‘IO.0 

NJ I A0 
NSTEP8 120 

FIG. 4.5. Results for (1.1) with square wave initial data with quadratic interpolation and 
i.e., the classical Lax-Wendroff scheme. Note the considerable dispersion. 

I 
NlJ Il.76 
NSTEP: a 
TIME I 'tZ.0 

FIG. 4.6. Results for (1.1) with square wave initial data with quadratic interpolation and a = 1.0. 
This scheme exhibits less dispersion than the classical Lax-Wendroff method. 
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FIG. 4.7. Results for (1.1) with square wave initial data, a = 0.6 and quintic interpolation. Clear!y 
there is a considerably less dispersion than with quadratic interpolation. 

FIG. 4.8. Results for (1.1) with square wave initial data, a = 1.0 and quintic interpolation. The 
dispersion error is smallest with a = 1.0. 

385 
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Courant number v for various values of a. The curve with (r: = 0.5 in Fig. 4.1 
represents results from the classical Lax-Wendroff scheme. Note: v was varied by 
setting c and dx to one and varying dt. T represents the final time. 

In all four figures the errors accumulated in the numerical schemes were due to 
phase shifts. Note that by varying a we can change the value of v at which the 
difference schemes satisfy the shift condition, i.e., the value of v at which the scheme 
is exact. And as the order of interpolating polynomial increases, the number of points 
at which the difference schemes satisfy the shift condition increases. The shift 
condition is satisfied at points v = ka - i, where i ranges from 1 to k. Clearly if a < 1 
the range of i is up to the point where v becomes negative. 

TABLE II 

Quintic Interpolation with Square Wave Initial Data 

V 0.5 0.6 0.8 1.0 

0.1 
0.2 
0.4 
0.5 
0.6 
0.8 
1.0 
1.2 
1.4 
1.5 
1.6 
1.8 
2.0 
2.2 
2.4 
2.5 
2.6 
2.8 
3.0 
3.2 

G 
G 
G 
E 
B 
B 
B 
B 
B 
E 
B 
B 
B 
B 
B 
E 

Unstable 
1 

G 
G 
G 
G 
G 
G 
E 
B 
B 
B 
B 
B 
E 
B 
B 
B 
B 
B 
E 

Unstable 
1 

3.8 
4.0 
4.2 

B 
B 
B 
B 
B 
B 
E 
G 
G 
G 
G 
G 
E 
B 
B 
B 
B 
B 
E 
B 
B 
B 
E 

Unstable 

B 
B 
B 
B 
B 
B 
E 
B 
B 
B 
B 
B 
E 
G 
G 
G 
G 
G 
E 
B 
B 
B 
E 
B 

4.8 
5.0 

B 
E 

Unstable 
1 

a 

Note. E-exact answer; G-result is comparable to Figs. 4.7, 4.8; B-severe oscillations present. 
The trend in the numerical results continues for a > 1. 
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The stability constraints for the individual difference schemes are easily determine 
with the heuristic stability analysis presented earlier. For example, consider Fig. 4.4 
with a = 1.0 and recall c = 1. Also recall the characteristic equation, along which the 
solution is propagated, has the form dt/dx = 1. We also note that for the triangular 
element in question dx = 5Ax = 5 (since Ax = 1). Thns the characteristic data will not 
fall within the triangular element and the scheme is unstable. However, if At < 5 t 
charactristic data for the solution at the (M 4 1)st time level is included in t 
triangular element. 

In all cases that we have studied (i.e., up to Q(h5)) the heuristic stability a~~~~~~§ 
appears to predict the correct results. 

An interesting result that we have been unable to explain is depicted in 
The values of v that lie between the arrows for a particular a (e.g., with a = 
region with $ ‘6, i.e., 3 < v < 4) have errors of 0(10-3), which are two orders o; 
magnitude larger than predicted. These errors are not caused by phase shift. 

K: I RLPHR: so c: 1.0 OT: . 

INITIAL U 

ox: .6 k&STEP : 60 

FINRL V 

FIG. 4.9. Results for the system (2.2a) with square wave initial data, cy = 0.5, v  = 0.4, and lineai 
interpolation. 
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For various values of v and a, Figs. 4.5 and 4.6 represent results for (1.1) with 
quadratic interpolating polynomials and square wave initial data. In particular 
Fig. 4.5 represents results for the Lax-Wendroff scheme, i.e., a = 0.5. 

Figures 4.7 and 4.8 represent results for (1.1) with quintic interpolation and square 
wave initial data. 

In all cases, for interpolating polynomials of second order up to polynomials of 
fifth order, we found dispersive errors. In general, however, the dispersion decreased 
with higher order interpolation. The slopes of the numerical solutions at the wave 
fronts were also much more accurate for higher order polynomials. 

Recall k is the order of polynomial interpolation. 
A very useful result of the study can be found in Table II. That is, for a fixed GI, 

v E (k(a - 4) - f, k(a - i) + 4) will produce best results. However, by varying (Y one 
can cover a very large range, of values of v and still maintain good results. (For 
example, using quintic interpolation we set a = 0.5 for v < 0.5, then change to CI = 0.6 
for 0.5 ,< v ,< 1.0, then change to a = 0.8 for 1.0 < v < 2.0, then change to a = 1.0 for 

It:3 RLPW: .50 c: 1.0 OT: . ox: .25 

INITIRL U INITIAL V 

NSTEP : 60 

FIG. 4.10. Results for the system (2.2a) with square wave initial data, a = 0.5, v  = 0.4, and cubic 
interpolation. 
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2.0 < v < 3.0, etc.) The term “good results” means results comparable to Figs. 4.7 
and 4.8. Although Table II only contains results for quintic interpolation the same 
statement holds true for lower order interpolation. 

Figures 4.9-4.11 represent results for the system (2.2a), which corresponds TV t 
second order equation (1.2). In all three figures v = 0.4, M = 0.5 and the ~urner~c~~ 
results are presented after 60 time steps. The upper half of each figure presents the 
initial distribution for u and U. 

The results for the system are very similar to the results for the single equation 
(1.1). Figure 4.9 (linear interpolation) is the only figure of the three that has a 
dominant dissipative error. All of the higher order polynomial interpolation schemes 
we checked had dominant dispersive errors, e.g., see Figs. 4.10 (cubic i~terpo~ati~~) 
and 4.11 (quintic interpolation). 

The same basic conclusion previously drawn from numerical results for (1.1) hoi 
for (2.2a). However, due to the introduction of two characteristic equations~ the 
G.F.L. stability criteria for (2.2a) is stricter and there is less freedom to vary a. 

,.Em- 

1.m 

.ml 

2.m 

I .6W 

3.mo 

-.mJ 

K:S RLPHA: .50 C:l.O 01: . 

INITIAL U 

---I--- 
FINAL U 

ox: 2s NBTEP : 60 

INITIRL V 

FINRL V 

FIG. 4.11. Results for the system (2.2a) with square wave initial data, cr = 0.5, u = 0.4, and quintic 
interpolation. 

581/40/2-9 
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5. NONLINEAR EXAMPLE 

In the previous section we examined the use of our method on linear equations. At 
this point we would like to present a nonlinear example. 

Consider the shallow water (compressible gas) equations in the following form: 

With our numerical technique (5.1) may be solved in two ways. The first 
technique, which is quite inefficient, would be to expand the entire system in terms of 
Lagrange polynomials. This would lead to a system of nonlinear algebraic equations 
which must be solved at each node. The second method (the method we choose to 
use) is more efficient. In this case the square matrix in (5.1) is considered constant 
over each element. This method then produces a system of linear algebraic equations 
that must be solved at each node. 

Figures 5.1 through 5.3 represent numerical results for (5.1) with initial data 

f (xl = 0, x > 0, 

h(x) = 20, x > 0, (5.2) 

v(0, t) = 20 + t, t>o. 

FIG. 5.1. Comparison of numerical and analytical results for the shallow water equations using 
quartic interpolation. 
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K: 2 RLP: .5 Dl: .025 ox: .50 NSTEP: 80 
.sooo , 

TUC ERROR -SF 

tVt ERRBR +I- 

.zono - 

8 CL-.OOOQ- 
22 

-.zooo- 

-.I3000 1 / / I / / -10.00 .oo 10.00 20.00 30.00 Lio.00 5 
X 

0.01 

FIG. 5.2. Error plot for the numerical solution to the shallow water equations with quadratic inter- 

-.0500 

-.lOOO 

-.*500 

-I 0.0 

K: Li RLP: .5 DT: .025 Dx: .50 NSTEP : 80 

=!J.= 

+v* ERROR +I- 

FIG. 5.3. Error plot as in Fig. 5.2 with quartic interpolation. 
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Figure 5.1 is a plot of the analytical solution of (5.1) subject to (5.2) versus our 
numerical solution at time t = 2. In this case quartic interpolation was used with 
a = f and the square matrix evaluated at one node left of center at time level n in 
each element. As can be seen the results are quite good. 

Figures 5.2 and 5.3 are plots, for 1x = 1, of the error induced by using quadratic 
and quartic polynomials, respectively. Note the considerable improvement derived by 
using higher order interpolation. 

As in quartic case, when quadratic interpolation was used the square matrix in 
(5.1) was evaluated at one node left of center at time level n (upstream weighting). 

The stability analysis for the nonlinear equation is analogous to that in Section 3 
only v now involves the eigenvalues of the square matrix in (5.1). Note that v varies 
from element to element. 

6. CONCLUSIONS 

The major contribution of this work is that we have presented a technique for 
generating explicit, arbitrary high order accuracy schemes for linear wave-type 
equations. The numerical results presented involved the solution of two very simple 
linear equations, and a more complex nonlinear problem. The technique, however, is 
applicable to other wave-type equations possessing a backward light cone data set. 

It is interesting to note that by varying the parameter a (the shape of the triangular 
element) we may generate a continuous spectrum of difference schemes. The stability 
of the schemes depends on both a and V, and for (1.1) by choosing the appropriate 
value of a any v can be used. Also, for (1.1) the schemes are stable for k(cw - 1) < 
v<ka. 

Another important fact brought out in the numerical results section is that by 
varying 01 for (1. l), we considerably increase the range of v over which a given order 
of polynomial interpolation produces good results, i.e., by increasing 01 periodically 
the stability criteria also increases. Standard finite difference schemes do not possess 
this property. 

For every order of polynomial interpolation we-examined (greater than first and up 
to 0(/z’)) we found dispersive errors. However, these errors decreased with increasing 
order of interpolation, 

The computational implementation of the procedure is quite simple. A change in 
the order of accuracy of the method requires only a slight programming change. 
Similarly (though varying a may considerably improve the numerical results over a 
given range of v) variations in Q can be handled with no programming changes. 
Computationally, the inversion of A is the only time consuming process. 

One final point that should be brought out is that free boundary problems and 
problems with rapidly varying gradients can be handled in an easy fashion with the 
technique presented. This follows from the ease in varying GI and hence the nodal 
spacing. 

We should at this point mention some important drawbacks to the methods 
presented in this article. 
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The major drawback of the method in its present form pertains to nonlinear 
equations (e.g., (5.1)). The difficulty encountered is that the matrix A in (2.3d) must 
be inverted at each node owing to the nonlinear equation. For orders of interpolation 
less than four this problem however can be overcome by linearizing (as is typicaiiy 
done with difference schemes) and inverting the linear system analytically (see, for 
exampie, (A.2) of the Appendix). For higher orders of interpolation it is difficult to 
analytically invert the matrix A. 

An effort is currently being put forth to find a general inverse to A of (2.3d) for 
arbitrary orders of interpolation. 

It is important to note that at the sacrifice of efficiency fully nonlinear systems can 
be solved. One must decide for himself how much efficiency he is willing to give up 
for higher numerical precision. 

We believe the overall methods have great promise. If and when one is able to 
write out an analytically explicit equation for the difference formulas of higher order 
a considerable amount of the difficulties encountered with nonlinear equations should 
be overcome. 

APPENDIX 

Using the notation of Fig. A.1 with linear interpolating polynomials, and applying 
Galerkin’s method over a single element (e) we find (Cushman 121) 

n+4 u. Jt(2a--l)y= 
( 

&a + 1) uj”-y+ (a--&v) u/“+,. 

The Euler, Lax, and upstream differencing schemes can be derived respectively by 
setting: 

(i) CI = 0, y = i, /3.= 1, 

(ii) (r = f, y = 1, p = 1, and 

(iii) a= 1, 7=:,/3= 1. 

n+B 

P 

L n 
X i-8 1 j+K 

FIG. A.1, Representation of the elements for linear interpolation, first order, single-step, explicit 

methods. 
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I- (J+W-lll(,n +A 

1-u i j+a 

l-6 I 
-0 Q-1 

FIG. A.2 Representation of the elements for quadratic interpolation, second order, single-step, 
explicit methods. 

Figure A.2 illustrates the location of the various nodel.points for quadratic inter- 
polation. If we again apply Galerkin’s method, only now use quadratic interpolation 
polynomials and test functions, we derive: 

AX=Bu; (A.21 

where 

(-S/?u + 16~~7 - 167) -67 (Spu - 16ay + 8~) 
A = 

[ 
(-2pv + 4ay + 27) -4y (2/b- 4cry t 6~) , 

(-Spu + 16ay - 8~) -6y (8/b - 16ay) I 

Q3u - 2ay + 2~) (-4/3v + 8ay - 167) (3pv - 6ay) 
@v-2ay+2y) (-Pv + 2ay) 3 

(-~/IV t 6ay - 6~) (~/IV - ii, - 8~) (-pv + 2(v) 1 
-f7Eij7 and P= If’]. 

As a special case if we set a = 4, y = 1, and /I = 1, invert A and solve for uj”” we 
derive the single-step O(dt*, AX*) Lax-Wendroff scheme. 
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